Driving-point admittance effects on the static playability of bowed strings

A case study using simulations from a bowed string physical model including finite-width thermal friction and hair dynamics

What makes a good violin?

Tone

Spectral characteristics of the radiativity

Playability

Variety and feasibility of gestures that result in good sound

Violin gestures

Bow velocity: Controls amplitude

Bow force (or pressure): Controls high frequencies

Bow-bridge distance: Controls **both**

Others: Position, tilt, skew, inclination

Vibration regimes

"Good sound" (Helmholtz)

"Aperiodic" sound

Anomalous Low Frequencies

Multiple Stick-Slip

Playability

How do **gestures** map to **regimes**? (volume and feasibility)

How do model parameters affect that?

Sounding point (relative bow-bridge distance)

Regime estimation

Regime maps

Minimum force estimation

Simplified regime estimator that only looks around the expected pitch

(Woodhouse, 1993)

$$f_{\min} = \frac{2v_{b}}{\pi^{2}\beta^{2}Y_{0}^{2}(\mu_{s}-\mu_{d})} \\ \cdot \left[\max_{t} \left\{ \operatorname{Re}\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} Y_{1}(2n\pi f_{0}) e^{2n\pi i f_{0} t} \right\} + \operatorname{Re}\sum_{n=1}^{\infty} \frac{Y_{1}(2n\pi f_{0})}{n^{2}} \right],$$

(Woodhouse, 1993)

$$\begin{split} f_{\min} &= \frac{2v_{\rm b}}{\pi^2 \beta^2 Y_0^2 (\mu_{\rm s} - \mu_{\rm d})} \quad \text{Ideal sawtooth wave} \\ &\cdot \left[\max_t \left\{ \operatorname{Re} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} Y_1(2n\pi f_0) e^{2n\pi i f_0 t} \right\} \\ &+ \operatorname{Re} \sum_{n=1}^{\infty} \frac{Y_1(2n\pi f_0)}{n^2} \right], \end{split}$$

(Woodhouse, 1993)

$$f_{\min} = \frac{2v_{b}}{\pi^{2}\beta^{2}Y_{0}^{2}(\mu_{s}-\mu_{d})} \quad \text{Admittance convolution}$$
$$\cdot \left[\max_{t} \left\{ \operatorname{Re}\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} Y_{1}(2n\pi f_{0}) e^{2n\pi i f_{0} t} \right\} + \operatorname{Re}\sum_{n=1}^{\infty} \frac{Y_{1}(2n\pi f_{0})}{n^{2}} \right],$$

(Woodhouse, 1993)

$$f_{\min} = \frac{2v_{b}}{\pi^{2}\beta^{2}Y_{0}^{2}(\mu_{s}-\mu_{d})}$$
Select phase with largest force "kick"
$$\left[\max_{t} \left\{ \operatorname{Re}\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} Y_{1}(2n\pi f_{0}) e^{2n\pi i f_{0} t} \right\} + \operatorname{Re}\sum_{n=1}^{\infty} \frac{Y_{1}(2n\pi f_{0})}{n^{2}} \right],$$

(Woodhouse, 1993)

$$f_{\min} = \frac{2v_{b}}{\pi^{2}\beta^{2}Y_{0}^{2}(\mu_{s}-\mu_{d})}$$

$$\cdot \left[\max_{t} \left\{ \operatorname{Re} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} Y_{1}(2n\pi f_{0}) e^{2n\pi i f_{0} t} \right\} + \operatorname{Re} \sum_{n=1}^{\infty} \frac{Y_{1}(2n\pi f_{0})}{n^{2}} \right], \text{Integration constant}$$

(Woodhouse, 1993)

$$f_{\min} = \frac{2v_{b}}{\pi^{2}\beta^{2}Y_{0}^{2}(\mu_{s}-\mu_{d})} \quad \text{Friction coefficients}$$
$$\cdot \left[\max_{t} \left\{ \operatorname{Re} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} Y_{1}(2n\pi f_{0}) e^{2n\pi i f_{0} t} \right\} + \operatorname{Re} \sum_{n=1}^{\infty} \frac{Y_{1}(2n\pi f_{0})}{n^{2}} \right],$$

Extensions to the Woodhouse model

Finite bow width

Minimum force is expressed in N/m (divide by hair width)

Numerical detuning and flattening

The fo is extracted with YIN rather than assumed from the score

Thermal friction

We assume a static value that makes sense

Prediction matching

The tribology of rosin

The range of mu changes depending on temperature Temperature increases during slip because of friction Friction changes with (normal) bow force

Post-computed friction coefficient difference during string capture and release at the minimum bow force

Correlation between expected and measured from the simulation

Thanks!

Quim Llimona

MUMT 618 Final Project December 2nd, 2015